132 research outputs found

    Capacitated facility location: Valid inequalities and facets

    Get PDF
    Location Theory;Optimization;Capacity;econometrics

    Lattice based extended formulations for integer linear equality systems

    Get PDF
    We study different extended formulations for the set X={xZnAx=Ax0}inordertotacklethefeasibilityproblemforthesetX = \{x \in Z^n \mid Ax = Ax^0\} in order to tackle the feasibility problem for the set X^+ = X\cap Z^n_+.Herethegoalisnottofindanimprovedpolyhedralrelaxationofconv. Here the goal is not to find an improved polyhedral relaxation of conv(X^+),butrathertoreformulateinsuchawaythatthenewvariablesintroducedprovidegoodbranchingdirections,andincertaincircumstancespermitonetodeducerapidlythattheinstanceisinfeasible.Forthecasethat, but rather to reformulate in such a way that the new variables introduced provide good branching directions, and in certain circumstances permit one to deduce rapidly that the instance is infeasible. For the case that Ahasonerow has one row aweanalyzethereformulationsinmoredetail.Inparticular,wedeterminetheintegerwidthoftheextendedformulationsinthedirectionofthelastcoordinate,andderivealowerboundontheFrobeniusnumberof we analyze the reformulations in more detail. In particular, we determine the integer width of the extended formulations in the direction of the last coordinate, and derive a lower bound on the Frobenius number of a.Wealsosuggesthowadecompositionofthevector. We also suggest how a decomposition of the vector a$ can be obtained that will provide a useful extended formulation. Our theoretical results are accompanied by a small computational study

    Continuous knapsack sets with divisible capacities

    Get PDF
    We study two continuous knapsack sets (Formula presented.) and (Formula presented.) with (Formula presented.) integer, one unbounded continuous and (Formula presented.) bounded continuous variables in either (Formula presented.) or (Formula presented.) form. When the coefficients of the integer variables are integer and divisible, we show in both cases that the convex hull is the intersection of the bound constraints and (Formula presented.) polyhedra arising as the convex hulls of continuous knapsack sets with a single unbounded continuous variable. The latter convex hulls are completely described by an exponential family of partition inequalities and a polynomial size extended formulation is known in the (Formula presented.) case. We also provide an extended formulation for the (Formula presented.) case. It follows that, given a specific objective function, optimization over both (Formula presented.) and (Formula presented.) can be carried out by solving (Formula presented.) polynomial size linear programs. A further consequence of these results is that the coefficients of the continuous variables all take the values 0 or 1 (after scaling) in any non-trivial facet-defining inequality of the convex hull of such sets. © 2015, Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society

    Better Approximation Algorithms for Technology Diffusion

    Full text link

    Changing Bases: Multistage Optimization for Matroids and Matchings

    Full text link
    This paper is motivated by the fact that many systems need to be maintained continually while the underlying costs change over time. The challenge is to continually maintain near-optimal solutions to the underlying optimization problems, without creating too much churn in the solution itself. We model this as a multistage combinatorial optimization problem where the input is a sequence of cost functions (one for each time step); while we can change the solution from step to step, we incur an additional cost for every such change. We study the multistage matroid maintenance problem, where we need to maintain a base of a matroid in each time step under the changing cost functions and acquisition costs for adding new elements. The online version of this problem generalizes online paging. E.g., given a graph, we need to maintain a spanning tree TtT_t at each step: we pay ct(Tt)c_t(T_t) for the cost of the tree at time tt, and also TtTt1| T_t\setminus T_{t-1} | for the number of edges changed at this step. Our main result is an O(logmlogr)O(\log m \log r)-approximation, where mm is the number of elements/edges and rr is the rank of the matroid. We also give an O(logm)O(\log m) approximation for the offline version of the problem. These bounds hold when the acquisition costs are non-uniform, in which caseboth these results are the best possible unless P=NP. We also study the perfect matching version of the problem, where we must maintain a perfect matching at each step under changing cost functions and costs for adding new elements. Surprisingly, the hardness drastically increases: for any constant ϵ>0\epsilon>0, there is no O(n1ϵ)O(n^{1-\epsilon})-approximation to the multistage matching maintenance problem, even in the offline case

    Constrained Non-Monotone Submodular Maximization: Offline and Secretary Algorithms

    Full text link
    Constrained submodular maximization problems have long been studied, with near-optimal results known under a variety of constraints when the submodular function is monotone. The case of non-monotone submodular maximization is less understood: the first approximation algorithms even for the unconstrainted setting were given by Feige et al. (FOCS '07). More recently, Lee et al. (STOC '09, APPROX '09) show how to approximately maximize non-monotone submodular functions when the constraints are given by the intersection of p matroid constraints; their algorithm is based on local-search procedures that consider p-swaps, and hence the running time may be n^Omega(p), implying their algorithm is polynomial-time only for constantly many matroids. In this paper, we give algorithms that work for p-independence systems (which generalize constraints given by the intersection of p matroids), where the running time is poly(n,p). Our algorithm essentially reduces the non-monotone maximization problem to multiple runs of the greedy algorithm previously used in the monotone case. Our idea of using existing algorithms for monotone functions to solve the non-monotone case also works for maximizing a submodular function with respect to a knapsack constraint: we get a simple greedy-based constant-factor approximation for this problem. With these simpler algorithms, we are able to adapt our approach to constrained non-monotone submodular maximization to the (online) secretary setting, where elements arrive one at a time in random order, and the algorithm must make irrevocable decisions about whether or not to select each element as it arrives. We give constant approximations in this secretary setting when the algorithm is constrained subject to a uniform matroid or a partition matroid, and give an O(log k) approximation when it is constrained by a general matroid of rank k.Comment: In the Proceedings of WINE 201

    Approximate Deadline-Scheduling with Precedence Constraints

    Full text link
    We consider the classic problem of scheduling a set of n jobs non-preemptively on a single machine. Each job j has non-negative processing time, weight, and deadline, and a feasible schedule needs to be consistent with chain-like precedence constraints. The goal is to compute a feasible schedule that minimizes the sum of penalties of late jobs. Lenstra and Rinnoy Kan [Annals of Disc. Math., 1977] in their seminal work introduced this problem and showed that it is strongly NP-hard, even when all processing times and weights are 1. We study the approximability of the problem and our main result is an O(log k)-approximation algorithm for instances with k distinct job deadlines

    A computational analysis of lower bounds for big bucket production planning problems

    Get PDF
    In this paper, we analyze a variety of approaches to obtain lower bounds for multi-level production planning problems with big bucket capacities, i.e., problems in which multiple items compete for the same resources. We give an extensive survey of both known and new methods, and also establish relationships between some of these methods that, to our knowledge, have not been presented before. As will be highlighted, understanding the substructures of difficult problems provide crucial insights on why these problems are hard to solve, and this is addressed by a thorough analysis in the paper. We conclude with computational results on a variety of widely used test sets, and a discussion of future research
    corecore